Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Behav ; 271: 114339, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37625474

RESUMO

The impact of psychosocial stressors on cardiovascular health in women is of growing interest in both the popular and scientific literature. Rodent models are useful for providing direct experimental evidence of the adverse cardiovascular consequences of psychosocial stressors, yet studies in females are scarce. Here, we investigated the effects of repeated exposure to witness social defeat stress (WS) on cardiomyocyte contractile function and intracellular Ca2+ homeostasis in young adult wild-type Groningen female rats. Female rats bore witness to an aggressive social defeat episode between two males for nine consecutive days or were exposed to a control procedure. Stress-related behaviors were assessed during the first and last WS/control exposure. Twenty-four hours after the last exposure, plasma corticosterone levels were measured, and cardiomyocytes were isolated for analyses of contractile properties and Ca2+ transients, and expression levels of proteins involved in intracellular Ca2+dynamics. The results show an impairment of the intrinsic cardiac mechanical properties and prolonged intracellular Ca2+decay in WS female rats showing social stress-related behavioral (larger amounts of burying behavior) and neuroendocrine (elevated plasma corticosterone levels) phenotypes. Further, the results implicate alterations in the sarcoplasmic reticulum Ca2+-ATPase/phospholamban complex in the contractile defects described in cardiomyocytes of WS female rats. In conclusion, this study highlights the utility of the WS model as an ethologically relevant social stressor for investigating pathophysiological processes that occur in the heart of female subjects and may increase vulnerability to social stress-related cardiovascular risk.


Assuntos
Corticosterona , Miócitos Cardíacos , Masculino , Ratos , Feminino , Humanos , Animais , Miócitos Cardíacos/metabolismo , Corticosterona/metabolismo , Contração Muscular , Cálcio/metabolismo
2.
Mol Genet Metab ; 139(4): 107630, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392700

RESUMO

Primary coenzyme Q10 (CoQ10) deficiency is a group of inborn errors of metabolism caused by defects in CoQ10 biosynthesis. Biallelic pathogenic variants in COQ7, encoding mitochondrial 5-demethoxyubiquinone hydroxylase, have been reported in nine patients from seven families. We identified five new patients with COQ7-related primary CoQ10 deficiency, performed clinical assessment of the patients, and studied the functional effects of current and previously reported COQ7 variants and potential treatment options. The main clinical features included a neonatal-onset presentation with severe neuromuscular, cardiorespiratory and renal involvement and a late-onset disease presenting with progressive neuropathy, lower extremity weakness, abnormal gait, and variable developmental delay. Baker's yeast orthologue of COQ7, CAT5, is required for growth on oxidative carbon sources and cat5Δ strain demonstrates oxidative growth defect. Expression of wild-type CAT5 could completely rescue the defect; however, yeast CAT5 harboring equivalent human pathogenic variants could not. Interestingly, cat5Δ yeast harboring p.Arg57Gln (equivalent to human p.Arg54Gln), p.Arg112Trp (equivalent to p.Arg107Trp), p.Ile69Asn (equivalent to p.Ile66Asn) and combination of p.Lys108Met and p.Leu116Pro (equivalent to the complex allele p.[Thr103Met;Leu111Pro]) partially rescued the growth defects, indicating these variants are hypomorphic alleles. Supplementation with 2,4 dihydroxybenzoic acid (2,4-diHB) rescued the growth defect of both the leaky and severe mutants. Overexpression of COQ8 and 2,4-diHB supplementation synergistically restored oxidative growth and respiratory defect. Overall, we define two distinct disease presentations of COQ7-related disorder with emerging genotype-phenotype correlation and validate the use of the yeast model for functional studies of COQ7 variants.


Assuntos
Doenças Mitocondriais , Ubiquinona , Humanos , Recém-Nascido , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Ubiquinona/metabolismo
3.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445873

RESUMO

Mitochondrial diseases (MDs) refer to a group of clinically and genetically heterogeneous pathologies characterized by defective mitochondrial function and energy production. Unfortunately, there is no effective treatment for most MDs, and current therapeutic management is limited to relieving symptoms. The yeast Saccharomyces cerevisiae has been efficiently used as a model organism to study mitochondria-related disorders thanks to its easy manipulation and well-known mitochondrial biogenesis and metabolism. It has been successfully exploited both to validate alleged pathogenic variants identified in patients and to discover potential beneficial molecules for their treatment. The so-called "drug drop test", a phenotype-based high-throughput screening, especially if coupled with a drug repurposing approach, allows the identification of molecules with high translational potential in a cost-effective and time-saving manner. In addition to drug identification, S. cerevisiae can be used to point out the drug's target or pathway. To date, drug drop tests have been successfully carried out for a variety of disease models, leading to very promising results. The most relevant aspect is that studies on more complex model organisms confirmed the effectiveness of the drugs, strengthening the results obtained in yeast and demonstrating the usefulness of this screening as a novel approach to revealing new therapeutic molecules for MDs.


Assuntos
Doenças Mitocondriais , Proteínas de Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
IUBMB Life ; 75(12): 983-1002, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37470284

RESUMO

Most eukaryotes possess a mitochondrial genome, called mtDNA. In animals and fungi, the replication of mtDNA is entrusted by the DNA polymerase γ, or Pol γ. The yeast Pol γ is composed only of a catalytic subunit encoded by MIP1. In humans, Pol γ is a heterotrimer composed of a catalytic subunit homolog to Mip1, encoded by POLG, and two accessory subunits. In the last 25 years, more than 300 pathological mutations in POLG have been identified as the cause of several mitochondrial diseases, called POLG-related disorders, which are characterized by multiple mtDNA deletions and/or depletion in affected tissues. In this review, at first, we summarize the biochemical properties of yeast Mip1, and how mutations, especially those introduced recently in the N-terminal and C-terminal regions of the enzyme, affect the in vitro activity of the enzyme and the in vivo phenotype connected to the mtDNA stability and to the mtDNA extended and point mutability. Then, we focus on the use of yeast harboring Mip1 mutations equivalent to the human ones to confirm their pathogenicity, identify the phenotypic defects caused by these mutations, and find both mechanisms and molecular compounds able to rescue the detrimental phenotype. A closing chapter will be dedicated to other polymerases found in yeast mitochondria, namely Pol ζ, Rev1 and Pol η, and to their genetic interactions with Mip1 necessary to maintain mtDNA stability and to avoid the accumulation of spontaneous or induced point mutations.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Humanos , DNA Polimerase gama/genética , DNA Polimerase I/genética , DNA Polimerase I/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA Mitocondrial/genética , Mutação , Replicação do DNA/genética
5.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36768505

RESUMO

In eukaryotes, mitochondrial RNAs (mt-tRNAs and mt-rRNAs) are subject to specific nucleotide modifications, which are critical for distinct functions linked to the synthesis of mitochondrial proteins encoded by mitochondrial genes, and thus for oxidative phosphorylation. In recent years, mutations in genes encoding for mt-RNAs modifying enzymes have been identified as being causative of primary mitochondrial diseases, which have been called modopathies. These latter pathologies can be caused by mutations in genes involved in the modification either of tRNAs or of rRNAs, resulting in the absence of/decrease in a specific nucleotide modification and thus on the impairment of the efficiency or the accuracy of the mitochondrial protein synthesis. Most of these mutations are sporadic or private, thus it is fundamental that their pathogenicity is confirmed through the use of a model system. This review will focus on the activity of genes that, when mutated, are associated with modopathies, on the molecular mechanisms through which the enzymes introduce the nucleotide modifications, on the pathological phenotypes associated with mutations in these genes and on the contribution of the yeast Saccharomyces cerevisiae to confirming the pathogenicity of novel mutations and, in some cases, for defining the molecular defects.


Assuntos
RNA , Saccharomyces cerevisiae , RNA Mitocondrial/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA/genética , RNA/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA Ribossômico , Mutação , Nucleotídeos
6.
Hum Mol Genet ; 32(6): 917-933, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36190515

RESUMO

Maintaining protein lipoylation is vital for cell metabolism. The H-protein encoded by GCSH has a dual role in protein lipoylation required for bioenergetic enzymes including pyruvate dehydrogenase and 2-ketoglutarate dehydrogenase, and in the one-carbon metabolism through its involvement in glycine cleavage enzyme system, intersecting two vital roles for cell survival. Here, we report six patients with biallelic pathogenic variants in GCSH and a broad clinical spectrum ranging from neonatal fatal glycine encephalopathy to an attenuated phenotype of developmental delay, behavioral problems, limited epilepsy and variable movement problems. The mutational spectrum includes one insertion c.293-2_293-1insT, one deletion c.122_(228 + 1_229-1) del, one duplication of exons 4 and 5, one nonsense variant p.Gln76*and four missense p.His57Arg, p.Pro115Leu and p.Thr148Pro and the previously described p.Met1?. Via functional studies in patient's fibroblasts, molecular modeling, expression analysis in GCSH knockdown COS7 cells and yeast, and in vitro protein studies, we demonstrate for the first time that most variants identified in our cohort produced a hypomorphic effect on both mitochondrial activities, protein lipoylation and glycine metabolism, causing combined deficiency, whereas some missense variants affect primarily one function only. The clinical features of the patients reflect the impact of the GCSH changes on any of the two functions analyzed. Our analysis illustrates the complex interplay of functional and clinical impact when pathogenic variants affect a multifunctional protein involved in two metabolic pathways and emphasizes the value of the functional assays to select the treatment and investigate new personalized options.


Assuntos
Hiperglicinemia não Cetótica , Humanos , Hiperglicinemia não Cetótica/genética , Hiperglicinemia não Cetótica/patologia , Proteínas/genética , Mutação , Éxons/genética , Glicina/genética , Glicina/metabolismo
7.
Mol Genet Metab ; 136(4): 260-267, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35820270

RESUMO

Biallelic pathogenic variants in the nuclear gene DARS2 (MIM# 610956), encoding the mitochondrial enzyme aspartyl-tRNA synthetase (MT-ASPRS) cause leukoencephalopathy with Brain Stem and Spinal Cord Involvement and Lactate Elevation (LBSL) (MIM# 611105), a neurometabolic disorder characterized by progressive ataxia, spasticity, developmental arrest or regression and characteristic brain MRI findings. Most patients exhibit a slowly progressive disease course with motor deterirartion that begins in childhood or adolescence, but can also occasionaly occur in adulthood. More severe LBSL presentations with atypical brain MRI findings have been recently described. Baker's yeast orthologue of DARS2, MSD1, is required for growth on oxidative carbon sources. A yeast with MSD1 knockout (msd1Δ) demonstrated a complete lack of oxidative growth which could be rescued by wild-type MSD1 but not MSD1 with pathogenic variants. Here we reported two siblings who exhibited developmental regression and ataxia with different age of onset and phenotypic severity. Exome sequencing revealed 2 compound heterozygous missense variants in DARS2: c.473A>T (p.Glu158Val) and c.829G>A (p.Glu277Lys); this variant combination has not been previously reported. The msd1Δ yeast transformed with plasmids expressing p.Glu259Lys, equivalent to human p.Glu277Lys, showed complete loss of oxidative growth and oxygen consumption, while the strain carrying p.Gln137Val, equivalent to human p.Glu158Val, showed a significant reduction of oxidative growth, but a residual ability to grow was retained. Structural analysis indicated that p.Glu158Val may interfere with protein binding of tRNAAsp, while p.Glu277Lys may impact both homodimerization and catalysis of MT-ASPRS. Our data illustrate the utility of yeast model and in silico analysis to determine pathogenicity of DARS2 variants, expand the genotypic spectrum and suggest intrafamilial variability in LBSL.


Assuntos
Aspartato-tRNA Ligase , Leucoencefalopatias , Adolescente , Adulto , Aspartato-tRNA Ligase/genética , Ataxia/patologia , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Progressão da Doença , Humanos , Ácido Láctico , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/genética , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Irmãos , Medula Espinal/diagnóstico por imagem , Medula Espinal/metabolismo , Medula Espinal/patologia
8.
Genes (Basel) ; 12(12)2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34946817

RESUMO

Mitochondrial DNA (mtDNA) maintenance is critical for oxidative phosphorylation (OXPHOS) since some subunits of the respiratory chain complexes are mitochondrially encoded. Pathological mutations in nuclear genes involved in the mtDNA metabolism may result in a quantitative decrease in mtDNA levels, referred to as mtDNA depletion, or in qualitative defects in mtDNA, especially in multiple deletions. Since, in the last decade, most of the novel mutations have been identified through whole-exome sequencing, it is crucial to confirm the pathogenicity by functional analysis in the appropriate model systems. Among these, the yeast Saccharomyces cerevisiae has proved to be a good model for studying mutations associated with mtDNA instability. This review focuses on the use of yeast for evaluating the pathogenicity of mutations in six genes, MPV17/SYM1, MRM2/MRM2, OPA1/MGM1, POLG/MIP1, RRM2B/RNR2, and SLC25A4/AAC2, all associated with mtDNA depletion or multiple deletions. We highlight the techniques used to construct a specific model and to measure the mtDNA instability as well as the main results obtained. We then report the contribution that yeast has given in understanding the pathogenic mechanisms of the mutant variants, in finding the genetic suppressors of the mitochondrial defects and in the discovery of molecules able to improve the mtDNA stability.


Assuntos
DNA Mitocondrial/genética , Instabilidade Genômica/genética , Mitocôndrias/genética , Mutação/genética , Saccharomyces cerevisiae/genética , Animais , Humanos , Proteínas Mitocondriais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...